Evolution of individuality during the transition from unicellular to multicellular life.
نویسنده
چکیده
Individuality is a complex trait, yet a series of stages each advantageous in itself can be shown to exist allowing evolution to get from unicellular individuals to multicellular individuals. We consider several of the key stages involved in this transition: the initial advantage of group formation, the origin of reproductive altruism within the group, and the further specialization of cell types as groups increase in size. How do groups become individuals? This is the central question we address. Our hypothesis is that fitness tradeoffs drive the transition of a cell group into a multicellular individual through the evolution of cells specialized at reproductive and vegetative functions of the group. We have modeled this hypothesis and have tested our models in two ways. We have studied the origin of the genetic basis for reproductive altruism (somatic cells specialized at vegetative functions) in the multicellular Volvox carteri by showing how an altruistic gene may have originated through cooption of a life-history tradeoff gene present in a unicellular ancestor. Second, we ask why reproductive altruism and individuality arise only in the larger members of the volvocine group (recognizing that high levels of kinship are present in all volvocine algae groups). Our answer is that the selective pressures leading to reproductive altruism stem from the increasing cost of reproduction with increasing group size. Concepts from population genetics and evolutionary biology appear to be sufficient to explain complexity, at least as it relates to the problem of the major transitions between the different kinds of evolutionary individuals.
منابع مشابه
Life-history evolution and the origin of multicellularity.
The fitness of an evolutionary individual can be understood in terms of its two basic components: survival and reproduction. As embodied in current theory, trade-offs between these fitness components drive the evolution of life-history traits in extant multicellular organisms. Here, we argue that the evolution of germ-soma specialization and the emergence of individuality at a new higher level ...
متن کاملThe evolution of self during the transition to multicellularity.
The notion of ' self' is intrinsically linked to the concepts of identity and individuality. During evolutionary transitions in individuality-such as, for instance, during the origin of the first cell, the origin of the eukaryotic cell and the origin of multicellular individuals-new kinds of individuals emerged from the interaction of previously independent entities. The question discussed here...
متن کاملEvolution of complexity in the volvocine algae: transitions in individuality through Darwin's eye.
The transition from unicellular to differentiated multicellular organisms constitutes an increase in the level complexity, because previously existing individuals are combined to form a new, higher-level individual. The volvocine algae represent a unique opportunity to study this transition because they diverged relatively recently from unicellular relatives and because extant species display a...
متن کاملA conceptual framework for the evolutionary origins of multicellularity.
The evolution of multicellular organisms from unicellular counterparts involved a transition in Darwinian individuality from single cells to groups. A particular challenge is to understand the nature of the earliest groups, the causes of their evolution, and the opportunities for emergence of Darwinian properties. Here we outline a conceptual framework based on a logical set of possible pathway...
متن کاملExperimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii
The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 Suppl 1 شماره
صفحات -
تاریخ انتشار 2007